Notes 8-8 Obj. 1

Exponential Growth

Ex. 1: Suppose your community has 4512 students this year. The student population is growing 2.5% each year. Write an equation to model the student population. What will the student population be in

b=100+2.5=102.5% $y=4512\cdot1.025$ $y=4512\cdot1.025$ $y=4512\cdot1.0868906$ $y\approx4859 \text{ students}$ ** round to one's place since you can't have a fraction

Ex. 2: Suppose you deposit \$1000 in a college fund that pays 7.2% interest compounded annually. Find the account balance after 5 years.

 $y = 1000 \cdot 1.072^{-5}$ $y = 1000 \cdot 1.072^{-5}$ $y = 1000 \cdot 1.4157088$ $y = 1000 \cdot 1.415.71$ # round to hundredths since it is \$\frac{1}{2}\$

Ex. 3: You deposit \$200 into an account earning 5%, compounded monthly. How much will be in the account after 2 years?

$$b = 100 + \frac{5}{12} \% = \frac{100 \cdot (1.00416)^{2}}{1200 \cdot 1.00416}$$

$$b = 100 + \frac{11}{12} \% = \frac{1000 \cdot 1.00416}{100.416} \times \frac{1000416}{100.416} \times \frac{10004}{100.416} \times \frac{10004}{100.416} \times \frac{10004}{100.416}$$

[y=#220.99]

* round to hundreds
since it is #