Unit 3
Lesson 2 Summary

The scales we choose when graphing a relationship often depend on what information we want to know. For example, say two water tanks are filled at different constant rates. The relationship between time in minutes \(t \) and volume in liters \(v \) of tank A is given by \(v = 2.2t \). For tank B the relationship is \(v = 2.75t \).

These equations tell us that tank A is being filled at a constant rate of 2.2 liters per minute and tank B is being filled at a constant rate of 2.75 liters per minute.

If we want to use graphs to see at what times the two tanks will have 110 liters of water, then using an axis scale from 0 to 10, as shown here, isn’t very helpful.

If we use a vertical scale that goes to 150 liters, a bit beyond the 110 we are looking for, and a horizontal scale that goes to 100 minutes, we get a much more useful set of axes for answering our question.
Now we can see that the two tanks will reach 110 liters 10 minutes apart—tank B after 40 minutes of filling and tank A after 50 minutes of filling.

It is important to note that both of these graphs are correct, but one uses a range of values that helps answer the question. In order to always pick a helpful scale, we should consider the situation and the questions asked about it.

* cannot judge steepness of 2 lines by just looking at them, you must use Slope to compare them
* When making scales on a graph decide 3 things:
 1. What is the largest number we have to go up to?
 2. What should you count by?
 3. Should both axes have the same scale?